

BACKGROUND

The bridging integrator-1 (BIN1) protein, also called Amphiphysin 2, is a member of BAR domain superfamily. BIN1 is a ubiquitous endocytic adaptor protein which was initially identified as a c-MYC-interacting pro-apoptotic tumor suppressor. Reduction of BIN1 expression in breast and other cancers was demonstrated, and introduction of *BIN1* into tumor cells lacking endogenous expression reduced their proliferative capacity. Several splice variants of BIN1 harbor a MYCbinding domain (MBD), thus retaining the ability to physically interact with and inhibit the oncogenic functions of c-MYC. The BIN1-c-MYC interaction mediates c-MYC-induced apoptosis, at least partly. Interestingly, BIN1-induced cell death is not compromised by dysfunctional p53, caspase inhibition, and/or overexpression of BCL-2, which suggests that BIN1's proapoptotic property could be useful for the eradication of cancer cells where p53 and/or caspases are frequently dysfunctional. It was demonstrated that BIN1 is a downstream mediator of E2F1-dependent apoptosis.¹

On the other hand, The BAR domain superfamily proteins are involved in endocytosis, organelle biogenesis, cell division, and cell migration. As a member of the BAR domain superfamily, BIN1 was shown to induce membrane invagination and initiate tubulogenesis in skeletal muscle cells. BIN1 functions as a tubulogenesis membrane scaffolding protein. BIN1 deforms the membrane bilayer through interaction between its N-terminal positively charged BAR domain and acidic phospholipids within the cell membrane. Knowledge of the role of BIN1 in muscle cells includes evidence of BIN1 distribution on T-tubules of skeletal myocytes and that constitutive knockdown of BIN1 in mice is perinatal lethal, with pathology revealing a hypertrophic dilated cardiomyopathy. Indeed, BIN1 is involved in helping recruit Cav1.2 to T-tubules and acts as a kind of molecular landing pad for Cav1.2 delivery along microtubules. Thus, BIN1 plays a dual role in cardiac muscle cells; not only is it needed to help generate T-tubules, but it also designates Ttubules as the appropriate site for delivery of Ltype calcium channels.² Furthermore, other tissuespecific splice isoforms of BIN1 have been described to participate in specific biological processes, e.g. a neuronal isoform implicated in synaptic vesicle endocytosis.³

References:

1. Cassimere, E.K. et al: Cell Death Diff. 16:1641-53, 2009

2. Hong, T.T. et al: PLoS ONE 8:e1000312, 2010 3. Wigge, P. & McMahon, H.T.: Trends Neurosci. 21:339-44, 1198

TECHNICAL INFORMATION

Source:

BIN1 Antibody is a mouse monoclonal antibody raised against a short peptide from human BIN1 sequence.

Specificity and Sensitivity:

This antibody detects endogenous levels of BIN1 proteins without cross-reactivity with other related proteins.

Storage Buffer: PBS and 30% glycerol

Storage:

Store at -20°C for at least one year. Store at 4°C for frequent use. Avoid repeated freeze-thaw cycles.

APPLICATIONS

Application:	*Dilution:
WB	1:1000
IP	n/d
IHC	1:50-200
ICC	1:50-200
FACS	n/d
*Optimal dilutions must be determined by end user.	

QUALITY CONTROL DATA

Western Blot detection of BIN1 proteins in various rat skeletal muscle (A), rat heart (B), and rat kidney (C) tissue lysates using BIN1 Antibody.

