MSDS 212-500
MSDS 212A-500
MSDS 212-GS
MSDS 212F-GS
MSDS 212K-500
MSDS 212KPR-500
MSDS 212PR-500

Description

Medium carefully optimized for the characteristics and requirements unique to Human Endothelial Cells. Use this medium with mid-sized blood vessels. Attention to detail ensures ideal cell health, viability, performance, physiology, morphology, consistency and data.
 
Use with
Human MesoEndo Endothelial Cell Media, with components and supplements optimized for the culture of numerous arterial endothelial cell types, including Brachiocephalic, Carotid, Coronary, Internal Thoracic (Mammary), Subclavian and Umbilical.

Details

CAI media are tested for sterility in order to confirm no bacteria, yeast or fungi contaminate the solutions.  The products undergo further quality control for correct pH, osmolality and lack of endotoxins. A panel of different bioassays affirm the media sustain a proper environment for expected cell-type-specific culture, growth, plating, karyotype, physiology, morphology, viability, population doublings, surface markers, cryopreservation, differentiation and/or induction.
 
Laboratory research use only (RUO). Not for human, clinical, diagnostic or veterinary use.

Products

Product Size CAT.# Price Quantity
Human Meso Endo Growth Medium: All-in-one ready-to-use Size: 500 ml CAT.#: 212-500 Price: $136.00
-+
Human Meso Endo Growth Medium Kit: Basal medium & growth supplement sold together packaged separately Size: Yields 500ml CAT.#: 212K-500 Price: $147.00
-+
Human EC Basal Medium: Basal medium (contains no growth supplement).  Add GS before use. Size: 500 ml CAT.#: 210-500 Price: $91.00
-+
Human Meso Endo Growth Supplement: Added to Basal Medium to create Growth Medium Size: 30 ml CAT.#: 212-GS Price: $81.00
-+
Human Meso Endo Growth Medium wo Phenol Red: Growth medium without phenol red Size: 500 ml CAT.#: 212PR-500 Price: $136.00
-+
Human Meso Endo Growth Medium wo Antibiotics: Growth medium without antibiotics Size: 500 ml CAT.#: 212A-500 Price: $143.00
-+
Human Meso Endo Growth Medium wo FBS: Growth Medium without FBS Size: 500 ml CAT.#: 212F-500 Price: $156.00
-+
Human Meso Endo Growth Medium Kit wo Phenol Red: Growth medium kit without phenol red Size: yields 500 ml CAT.#: 212KPR-500 Price: $150.00
-+
Human Meso Endo Growth Supplement wo FBS: Growth Supplement without FBS Size: 5 ml CAT.#: 212F-GS Price: $88.00
-+

Related Products

Product Size CAT.# Price Quantity
Freezing Medium: For general cryopreservation of most primary cells. Contains FBS & DMSO. Size: 50 ml CAT.#: 040-50 Price: $54.00
-+
Subculture Reagent Kit: 100 ml each of HBSS, Trypsin/EDTA & Trypsin Neutralizing Solution Size: 1 Kit CAT.#: 090K Price: $63.00
-+

Extended Family Products

Product Size CAT.# Price Quantity
Cytofect Endothelial Cell Transfection Kit (250 x 24-Wells): 250 x 24-Well Rxns Size: 1 Kit CAT.#: TF101K Price: $496.00
-+
Cytofect Endothelial Cell Transfection Sample Kit (25 x 24-Wells): 25 x 24-Well Rxns Size: 1 Sample Kit CAT.#: TF101KS Price: $62.00
-+
Cyto-X Cell Counting Reagent: 500 tests Size: 1 Bottle CAT.#: 028-01 Price: $160.00
Cyto-X Cell Counting Reagent Sample: 100 tests Size: Sample CAT.#: 028-S Price: $41.00

Resources/Documents

Publications

2017

Izadifar M, Babyn P, Kelly ME, Chapman D, Chen X. 2017. Bioprinting pattern-dependent electrical/mechanical behavior of cardiac alginate implants: characterization and ex-vivo phase-contrast microtomography assessment. Tissue Eng Part C Methods. doi: 10.1089/ten.TEC.2017.0222.

Gardner, A., P. Montgomery, Y. Zhao, F. Silva-Palacios, Z. Ungvari, A. Csiszar and W. Sonntag. 2017. Association between daily walking and antioxidant capacity in patients with symptomatic peripheral artery disease. J Vasc Surg, dx.doi.org/10.1016/j.jvs.2016.12.108.
2016
Gardner, A., P. Montgomery, A. Casanegra, F. Silva-Palacios, Z. Ungvari and A. Csiszar. 2016. Association between gait characteristics and endothelial oxidative stress and inflammation in patients with symptomatic peripheral artery disease.  Age, 36:64.
Qiao, C., F. Meng, I. Jang, H. Jo, Y. Chen and J. Zhang. 2016. Deep transcriptomic profiling reveals the similarity between endothelial cells cultured under static and oscillatory shear stress conditionsPhysiol Genomics, 48:660-666.
Xu, S., M. Koroleva, M. Yin and Z. Jin. 2016. Atheroprotective laminar flow inhibits Hippo pathway effector YAP in endothelial cells. Translational Research, 176:18-28.
2015
Boire, T., M. Gupta, A. Zachman, S. Lee, D. Balikov, K. Kim, L. Bellan, and H. Sung. 2015. Pendant Allyl Crosslinking as a Tunable Shape Memory Actuator for Vascular Applications. Acta Biomaterialia, doi:10.1016/j.actbio.2015.06.004.
Gardner, A., D. Parker, P. Montgomery, D. Sosnowska, A. Casanegra, Z. Ungvari, A. Csiszar, and W. Sonntag. 2015. Endothelial Cell Inflammation and Antioxidant Capacity are Associated With Exercise Performance and Microcirculation in Patients With Symptomatic Peripheral Artery Disease. Angiology, doi: 10.1177/0003319714566863.
Guerrero, A., C. Iglesias, S. Raguz, E. Floridia, J. Gil, C. Pombo, and J. Zalvide. 2015. The cerebral cavernous malformation 3 gene is necessary for senescence induction. Aging Cell, 14:274-283.
2014
Galougahi, K. C. Liu, C. Gentile, C. Kok, A. Nunez., A. Garcia, N. Fry, M. Davies, C. Hawkins, H. Rasmussen, and G. Figtree. 2014. Glutathionylation Mediates Angiotensin II–Induced eNOS Uncoupling, Amplifying NADPH OxidaseDependent Endothelial Dysfunction. J Am Heart Assoc, April 22.
Lord, M., M. Jung, B. Cheng and J. Whitelock. 2014. Transcriptional complexity of the HSPG2 gene in the human mast cell line, HMC-1. Matrix Biol, 35:123-131.
Morgan, P., P. Sheahan and M. Davies. 2014. Perturbation of Human Coronary Artery Endothelial Cell Redox State and NADPH Generation by Methylglyoxal. PLoS ONE, dx.doi.org/10.1371/journal.pone.0086564.
Morrison, D., J. Aitken, M. deJonge, F. Issa, H. Harris, and L. Rendina. 2014. Synthesis and Biological Evaluation of a Class of MitochondriallyTargeted Gadolinium (III) Agents. Chemistry – A European Journal, 20:16602-16612.
Tucsek, A., P. Toth, S. Tarantini, D. Sosnowska, T. Gautam, J. Warrington, C. Giles, J. Wren, A. Koller, P. Ballabh, W. Sonntag, Z. Ungvari, and A. Csiszar. 2014. Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J Gerontol A Biol Sci Med Sci, June 3.
2012
Crowder, S.W., M.K. Gupta, L.H. Hofmeister, A.L. Zachman, and H.-J. Sung. 2012. Modular polymer design to regulate phenotype and oxidative response of human coronary artery cells for potential stent coating applications. Acta Biomat. 8:559-569.
Jemy, J. 2012. Does Human Leukocyte Antigen-G (HLA-G) Play a Role in Immune Modulation and Vasculopathy in Heart Transplantation?  Masters Thesis, U Toronto. 
Ramirez-Sanchez, I., H. Aguilar, G. Ceballos, and F. Villarreal. 2012. (-)-Epicatechin-induced calcium independent eNOS activation: roles of HSP90 and AKT. Molecular and cellular biochemistry. 370:141-150.
Tso, C., K.-A. Rye, and P. Barter. 2012. Phenotypic and Functional Changes in Blood Monocytes Following Adherence to Endothelium. PloS one. 7:e37091.
Valcarcel-Ares, M., T. Gautam, J. Warrington, L. Bailey-Down, D. Sosnowska, R. de Cabo, G. Losonczy, W. Sonntag, Z. Ungvari, and A. Csiszar. 2012. Disruption of Nrf2 Signaling Impairs Angiogenic Capacity of Endothelial Cells: Implications for Microvascular Aging. J Gerontol A Biol Sci Med Sci, 67:821-829.
2011
Crowder, S.W. 2011. Modular Design of Stent Polymers Regulates Human Coronary Artery Cell Type-Specific Oxidative Response and Phenotype. Vanderbilt University, MSc dissertation.
Di Bartolo, B., L. Vanags, J. Tan, S. Bao, K.-A. Rye, P. Barter, and C. Bursill. 2011. The apolipoprotein A-I mimetic peptide, ETC-642, reduces chronic vascular inflammation in the rabbit. Lipids in health and disease. 10:224.
Singelyn, J.M., and K.L. Christman. 2011. Modulation of material properties of a decellularized myocardial matrix scaffold. Macromolecular bioscience. 11:731-738.
2010
Seif-Naraghi, S.B., M.A. Salvatore, P.J. Schup-Magoffin, D.P. Hu, and K.L. Christman. 2010. Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Engin. Part A. 16:2017-2027.
2009
Singelyn, J.M., J.A. DeQuach, S.B. Seif-Naraghi, R.B. Littlefield, P.J. Schup-Magoffin, and K.L. Christman. 2009. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 30:5409-5416.